

100 ANOS A PENSAR NO FUTURO

2. Simplex Method

2.1 Introduction

- 2.2 Augmented Form and Basic Feasible Solutions
- 2.3 Simplex Algorithm

2

Instituto Superior de Economia e Gestão UNIVERSIDADE TÊCNICA DE LISBOA

Prototype Example 1

 $x_1 - no.$ batches of P1 produced per week (P1=8-foot glass door with aluminum framing) $x_2 - no.$ batches of P2 produced per week (P2=4×6 foot double-hung wood framed window) Z - total profit per week (in thousands of dollars) from producing these two products

Linear Programming (LP) Model:

$$Max Z = 3x_1 + 5x_2$$

s.t.
$$\begin{cases} x_1 & \leq 4 \\ 2x_2 & \leq 12 \\ 3x_1 + 2x_2 & \leq 18 \\ x_1, x_2 \geq 0 \end{cases}$$

Linear Programming

Definitions I (Recall)

Solution of an LP – a vector of \mathbb{R}^n which components are the values of the variables;

Feasible Solution (FS) – a solution that satisfies all the constraints (functional and sign);

Non Feasible Solution (NFS) – a solution that does not satisfy at least one of the constraints;

Feasible Region (**FR**) – the set of all feasible solutions;

Optimal Solution (**OS**) – a feasible solution that gives the best value to the objective function (OF) (the best value=maximum or minimum);

Optimal value – the value of the objective function at an optimal solution;

Binding constraint in a solution – a constraint that hold with equality at that solution;

To solve an LP is to determine the optimal solution (or solutions) and the optimal value or to conclude that an optimal solution does not exist and why.

Linear Programming

Properties (Recall)

Prop 1: The Feasible Region of an LP problem is either an empty set or a convex set.

Prop 2: If the Feasible Region of an LP problem is nonempty and bounded then at least an optimal solution exists.

Prop 3: If an LP problem has optimum then **at least one of its corner point feasible** solutions (CPF) **is an optimal solution**.

Prop 4: Given an LP Problem with optimum, if a CPF has no adjacent CPF with a better value for the Objective Function then that point is an optimal solution.

Prop 3: If an LP problem has optimum then at least one of its corner point feasible solutions (FCP) is an optimal solution. (**Recall**)

5 constraints 2 binding

$$Max z = 3x_1 + 5x_2$$

$$x_1 \leq 4 \quad (3)$$

$$2x_2 \leq 12 \quad (4)$$

$$3x_1 + 2x_2 \leq 18 \quad (5)$$

$$x_1 \geq 0 \quad (1)$$

$$x_2 \geq 0 \quad (2)$$
Feasible ?

$$\begin{cases} 3x_1 + 2x_2 \leq 18 & (5) \text{ False} \\ x_1 & \geq 0 & (1) \text{ OK} & \text{NO!} \\ & x_2 \geq 0 & (2) \text{ OK} \end{cases}$$

Binding constraints

solution

Feasible / infeasible

$x_1 \ge 0$	$x_2 \ge 0$	$x_1 \leq 4$	$2x_2 \leq 12$	$3x_1 + 2x_2 \le 18$	<i>x</i> ₁	<i>x</i> ₂	
Yes	Yes				0	0	0
Yes		Yes			No	sol.	
Yes			Yes		0	6	30
Yes				Yes	0	9	
	Yes	Yes			4	0	12
	Yes		Yes		No	sol.	
	Yes			Yes	6	0	0
		Yes	Yes		4	6	
		Yes		Yes	4	3	27
			Yes	Yes	2	6	36

Evaluate the objective function value of the feasible solutions

Choose the best!

solution

Instituto Superior de Economia e Gestão UNIVERSIDADE TÉCNICA DE LISBOA

In this course

Simplex method to solve LP problems in the standard form and nonnegative right-hand-sides .

Definitions

Standard form of an LP – a maximization problem

- + all functional constraints expressed by inequalities of the form \leq
- + all variables nonnegative (≥ 0);

Augmented form of an LP – LP model where

+ all variables nonnegative (≥ 0)
+ all functional constraints expressed by equations (using nonnegative variables - slack variables or surplus variables);

Augmented solution is a solution to the LP problem in the augmented form.

Properties

Prop 5: Every LP problem can be rewritten as an equivalent problem in the maximisation augmented form.

Writing an LP problem as a maximization augmented form problem

Objective: Min
$$Z = \sum_{j=1}^{n} c_j x_j \Leftrightarrow Max(-Z) = \sum_{j=1}^{n} (-c_j) x_j$$
 (Min $Z = -Max(-Z)$)

Constraints:

"
$$\leq :: \quad \sum_{j=1}^{n} a_{ij} x_j \le b_i \iff \sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_i \land x_{n+i} \ge 0$$

$$\stackrel{\text{"}}{\geq} \stackrel{\text{"}}{:} \sum_{j=1}^{n} a_{ij} x_j \ge b_i \iff \sum_{j=1}^{n} a_{ij} x_j - x_{n+i} = b_i \land x_{n+i} \ge 0$$

Variables:

$$x_{j} \leq 0 \Leftrightarrow x_{j} = -x'_{j} \quad (x'_{j} \geq 0)$$
$$x_{j} \text{ livre } \Leftrightarrow x_{j} = x'_{j} - x''_{j} \quad \left(\begin{cases} x'_{j} = \text{Max}\{0; x_{j}\} \geq 0\\ x''_{j} = \text{Max}\{0; -x_{j}\} \geq 0 \end{cases}\right)$$

Definitions

Consider a problem with *m* equations and ℓ (>*m*) nonnegative variables.

Set to zero $\ell - m$ nonbasic variables (NBV). If possible, in a unique way, solve the system of

linear equations to obtain the value of the remaining m variables – **basic variables** (BV)

Basic Solution (BS).

Instituto Superior de Economia e Gestão

Basic Feasible Solution (**BFS**) – is a BS with all variables verifying the signal constraints. Otherwise the solution is **Basic InFeasible Solution** (**BIFS**).

1 BFS = 1 corner point of the FR (Feasible Region)

1 corner point of the FR at least one BFS

Adjacent basic solutions - only one different BV (In \mathbb{R}^2 - extreme points of a line segment)

Prototype augmented form

$$Max \ z = 3x_1 + 5x_2$$

$$s.t.\begin{cases} x_1 & \leq 4 \\ & 2x_2 \leq 12 \\ 3x_1 + 2x_2 \leq 18 \\ x_1, x_2 & \geq 0 \end{cases}$$

$$Max z = 3x_{1} + 5x_{2}$$

$$s.t.\begin{cases} x_{1} + x_{3} + x_{4} = 4 \\ 2x_{2} + x_{4} = 12 \\ 3x_{1} + 2x_{2} + x_{5} = 18 \\ x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0 \end{cases}$$

Binding constraints

solution

x_1	<i>x</i> ₂	x ₃	x_4	x_5		<i>x</i> ₁	<i>x</i> ₂	
0	0	4	12	18	-	0	0	
0	-	0	-	-		No	sol.	
0	6	4	0	6		0	6	
0	9	4	(-6)	0		0	9	
4	0	0	12	6		4	0	
-	0	-	0	-		No	sol.	
6	0	(-2)	12	0		6	0	
4	6	0	0	(-6)		4	6	
4	3	0	6	0	-	4	3	
2	6	2	0	0	-	2	6	

LP –simplex algorithm

	Bas		coefficients								x_2 basic
iter	Var	Eq	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	RHS	Op?	
0	Z	0	1	-3	-5	0	0	0	0	NO	
	<i>x</i> ₃	1	0	1	0	1	0	0	4		$Min\{\frac{12}{2},\frac{18}{2}\}$
	<i>x</i> ₄	2	0	0	2	0	1	0	12		
	<i>x</i> ₅	3	0	3	2	0	0	1	18		x_4 non basic

LP –simplex algorithm (George Dantzig, 1947)

0. Consider an LP problem in the standard form with all RHS nonnegative.

Initialization

- 1. Write the problem in the *augmented* form
- 2. Determine an initial BFS: NBV = decision variables and solve the system; Write the simplex tableau; $k \leftarrow 1$

Iteration k

- 3. If the values in the Objective Function row ≥ 0 , STOP (optimal basic solution found). Otherwise, EC: Min{coeffic. < 0 in the Objective Function row} [for the new BV x_p]
- 4. If all the coeffic. in the column of the x_p variable are ≤ 0 , **STOP** (unbounded Obj. Function).

Otherwise, LC: Min $\left\{ \frac{\text{RHS}}{\text{coeffic.} > 0 \text{ in the column of } x_p} \right\}$

[for the new NBV x_r]

Instituto Superior de Economia e Gestão

5. Update the simplex tableau \Rightarrow new BFS: x_p BV; x_r NBV;

 $k \leftarrow k + 1$; go to 3.

EC=entering criterium;LC=Leaving criterium.

