

100 ANOS A PENSAR NO FUTURO

LP - The Simplex Method

2. Simplex Method

2.1 Introduction
2.2 Augmented Form and Basic Feasible Solutions
2.3 Simplex Algorithm

Prototype Example 1

x_{1} - no. batches of P1 produced per week (P1=8-foot glass door with aluminum framing)
x_{2} - no. batches of P2 produced per week (P2=4×6 foot double-hung wood framed window)
Z - total profit per week (in thousands of dollars) from producing these two products

Linear Programming (LP) Model:

$$
\begin{gathered}
\operatorname{Max} Z=3 x_{1}+5 x_{2} \\
\text { s.t. }\left\{\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}\right.
\end{gathered}
$$

Linear Programming

Definitions I (Recall)

Solution of an LP - a vector of R^{n} which components are the values of the variables;
Feasible Solution (FS) - a solution that satisfies all the constraints (functional and sign);
Non Feasible Solution (NFS) - a solution that does not satisfy at least one of the constraints;
Feasible Region (FR) - the set of all feasible solutions;
Optimal Solution (OS) - a feasible solution that gives the best value to the objective function (OF)
(the best value=maximum or minimum);
Optimal value - the value of the objective function at an optimal solution;
Binding constraint in a solution - a constraint that hold with equality at that solution;

To solve an LP is to determine the optimal solution (or solutions) and the optimal value or to conclude that an optimal solution does not exist and why.

Linear Programming

Properties (Recall)

Prop 1: The Feasible Region of an LP problem is either an empty set or a convex set.
Prop 2: If the Feasible Region of an LP problem is nonempty and bounded then at least an optimal solution exists.

Prop 3: If an LP problem has optimum then at least one of its corner point feasible solutions (CPF) is an optimal solution.

Prop 4: Given an LP Problem with optimum, if a CPF has no adjacent CPF with a better value for the Objective Function then that point is an optimal solution.

LP - The Simplex Method

Prop 3: If an LP problem has optimum then at least one of its corner point feasible solutions (FCP) is an optimal solution. (Recall)

5 constraints 2 binding

$$
\begin{equation*}
\operatorname{Max} z=3 x_{1}+5 x_{2} \tag{3}
\end{equation*}
$$

maximum $C_{2}^{5}=\frac{5!}{2!(5-2)!}$ solutions !
(3) $\left\{\begin{array}{lll}x_{1} & & =4 \\ \text { (4) } & & =4 \\ & 2 x_{2} & =12\end{array} \begin{cases}x_{1} & \\ & x_{2}\end{cases}\right.$

$$
\begin{align*}
&=4\left\{\begin{array}{l}
x_{1} \\
2 x_{2}
\end{array}\right. \tag{1}\\
&=12
\end{align*}
$$

$$
\begin{equation*}
x_{2}=6 \tag{2}
\end{equation*}
$$

Feasible?

$$
\left\{\begin{array}{rlr}
3 x_{1}+2 x_{2} & \leq 18 & \text { (5) False } \\
x_{1} & & \geq 0 \\
& x_{2} & \geq 0
\end{array}\right.
$$

NO!

Binding constraints
solution
Feasible / infeasible

$\boldsymbol{x}_{\mathbf{1}} \geq \mathbf{0}$	$\boldsymbol{x}_{\mathbf{2}} \geq \mathbf{0}$	$\boldsymbol{x}_{\mathbf{1}} \leq \mathbf{4}$	$\mathbf{2 x}_{\mathbf{2}} \leq 12$	$\mathbf{3} \boldsymbol{x}_{\mathbf{1}}+\mathbf{2} \boldsymbol{x}_{\mathbf{2}} \leq \mathbf{1 8}$
Yes	Yes			
Yes		Yes		
Yes			Yes	
Yes				Yes
	Yes	Yes		
	Yes		Yes	
	Yes			Yes
		Yes	Yes	
		Yes		Yes
			Yes	Yes

\boldsymbol{x}_{1}	x_{2}	
0	0	0
No sol.		
0	6	30
0	9	
4	0	12
No sol.		
6	0	0
4	6	
4	3	27
2	6	36

Evaluate the objective function value of the feasible solutions
Choose the best!

Feasible / infeasible

LP - The Simplex Method

Prop 4: Given an LP Problem with optimum, if a FCP has no adjacent FCP with a better value for the OF then that point is an optimal solution.(Recall)

LP - The Simplex Method

In this course
Simplex method to solve LP problems in the standard form and nonnegative right-hand-sides .

Definitions

Standard form of an LP - a maximization problem

+ all functional constraints expressed by inequalities of the form \leq
+ all variables nonnegative (≥ 0);
Augmented form of an LP - LP model where
+ all variables nonnegative (≥ 0)
+ all functional constraints expressed by equations (using nonnegative variables - slack variables or surplus variables);

Augmented solution is a solution to the LP problem in the augmented form.

Properties

Prop 5: Every LP problem can be rewritten as an equivalent problem in the maximisation augmented form.

LP - The Simplex Method

Writing an LP problem as a maximization augmented form problem

Objective: $\operatorname{Min} Z=\sum_{j=1}^{n} c_{j} x_{j} \Leftrightarrow \operatorname{Max}(-Z)=\sum_{j=1}^{n}\left(-c_{j}\right) x_{j} \quad$ (Min $\left.Z=-\operatorname{Max}(-Z)\right)$

Constraints:

$$
\begin{aligned}
& " \leq ": \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \Leftrightarrow \sum_{j=1}^{n} a_{i j} x_{j}+x_{n+i}=b_{i} \wedge x_{n+i} \geq 0 \\
& " \geq ": \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \Leftrightarrow \sum_{j=1}^{n} a_{i j} x_{j}-x_{n+i}=b_{i} \wedge x_{n+i} \geq 0
\end{aligned}
$$

Variables:

$$
\left.\begin{array}{l}
x_{j} \leq 0 \Leftrightarrow x_{j}=-x^{\prime}{ }_{j} \quad\left(x_{j}^{\prime} \geq 0\right) \\
x_{j} \text { livre } \Leftrightarrow x_{j}=x_{j}^{\prime}-x_{j}^{\prime \prime} \quad\left(\left\{\begin{array}{l}
x_{j}^{\prime}=\operatorname{Max}\left\{0 ; x_{j}\right\} \geq 0 \\
x^{\prime \prime} \\
j
\end{array}=\operatorname{Max}\left\{0 ;-x_{j}\right\} \geq 0\right.\right.
\end{array}\right), ~ l
$$

LP - The Simplex Method

Definitions

Consider a problem with m equations and $\ell(>m)$ nonnegative variables.
Set to zero $\ell-m$ nonbasic variables (NBV). If possible, in a unique way, solve the system of linear equations to obtain the value of the remaining m variables - basic variables (BV)

Basic Solution (BS).

Basic Feasible Solution (BFS) - is a BS with all variables verifying the signal constraints.
Otherwise the solution is Basic InFeasible Solution (BIFS).

1 BFS $\longmapsto 1$ corner point of the FR (Feasible Region)
1 corner point of the FRat least one BFS

Adjacent basic solutions - only one different BV (In \mathbb{R}^{2} - extreme points of a line segment)

LP - The Simplex Method

Prototype augmented form

$$
\operatorname{Max} z=3 x_{1}+5 x_{2}
$$

$$
\text { s.t. }\left\{\begin{aligned}
x_{1} & \leq 4 \\
& \\
3 x_{1}+2 x_{2} & \leq 12 \\
x_{1}, & x_{2}
\end{aligned}\right.
$$

$\operatorname{Max} z=3 x_{1}+5 x_{2}$

$$
\text { s.t. }\left\{\begin{array}{rllll}
x_{1} & & +x_{3} & =4 \\
3 x_{1}+2 x_{2} & & +x_{4} & =12 \\
x_{1}, & x_{2}, & x_{3}, & x_{4}, \quad x_{5} \geq 0
\end{array}\right.
$$

Binding constraints
solution
Feasible / infeasible

x_{1}	$\boldsymbol{x}_{\mathbf{2}}$
0	0
No sol.	
0	6
0	9
4	0
No sol.	
6	0
4	6
4	3
2	6

LP -simplex algorithm

	Bas	cd fficients													
iter	Var	Eq	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS	Op?					
0	Z	0	1	-3	-5	0	0	0	0	NO					
	x_{3}	1	0	1	0	1	0	0	4						
	x_{4}	2	0	0	2	0	1	0	12						
	x_{5}	3	0	3	2	0	0	1	18						

x_{2} basic
\downarrow
$\operatorname{Min}\left\{\frac{12}{2}, \frac{18}{2}\right\}$
x_{4} non basic

LP -simplex algorithm (George Dantzig, 1947)

0. Consider an LP problem in the standard form with all RHS nonnegative.

Initialization

1. Write the problem in the augmented form
2. Determine an initial BFS: NBV = decision variables and solve the system;

Write the simplex tableau; $k \longleftarrow 1$
Iteration k
3. If the values in the Objective Function row ≥ 0, STOP (optimal basic solution found).

Otherwise, EC: Min\{coeffic. <0 in the Objective Function row\} [for the new BV x_{p}]
4. If all the coeffic. in the column of the x_{p} variable are ≤ 0, STOP (unbounded Obj. Function).

$$
\text { Otherwise, LC: } \operatorname{Min}\left\{\frac{\text { RHS }}{\text { coeffic. }>0 \text { in the column of } x_{p}}\right\} \quad\left[\text { for the new NBV } x_{r}\right]
$$

5. Update the simplex tableau \Rightarrow new BFS: $x_{p} \mathrm{BV} ; x_{r} \mathrm{NBV}$;
```
k\leftarrowk+1; go to 3.
```

$\mathrm{EC}=$ entering criterium;LC=Leaving criterium.

LP - The Simplex Method

